\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Uge 5, Lille Dag: Matrixalgebra

I dag fortsætter vi stille og roligt med lineære ligningssystemer og matrixalgebra. En del af arbejdet handler om en særlig type matricer, de kvadratiske matricer, som giver anledning til begreber som regulær, singulær og invers matrix. Et gennemgående tema er matrixligninger, og hvordan matrixalgebra kaster nyt lys over løsninger på lineære ligningssystemer og deres struktur.

Dagens nøglebegreber
Regning med matricer (matrixalgebra). Transponeret matrix. Rangen af en matrix. Kvadratisk matrix. Enhedsmatricen E. Regulær matrix og invers matrix.

Forberedelse og pensum
Til i dag hører igen emner fra eNote 6: Lineære ligningssystemer og eNote 7: Matricer_og_matrixalgebra. Læs desuden eNote 8: Kvadratiske matricer.

Maple Pensum
Basic kommandoer: $\mA.\mv$ og $\mA.\mB\,:$ Et punktum ganger matrix med vektor og matrix med matrix Rank: Finder rangen af en matrix Transpose: Transponerer en matrix eller vektor $\mA^\wedge(-1)\,$: Finder den inverse matrix til $\mA.$ Til dagens emne hører MapleDemoen: $ $Kvadratiske matricer

SymPy Pensum
Basic kommandoer: $\mA*\mv$ og $\mA*\mB\,:$ Det sædvanlige gangetegn bruges også til gange en matrix med vektor og en matrix med matrix .rank(): Finder rangen af en matrix. .transpose(): Transponerer en matrix. .inv(): Finder den inverse matrix. Til dagens emne hører SymPyDemoen: $ $Kvadratiske matricer

Aktivitetsprogrammet

  • $\,$ 8.00 – $\,$ 9.00: $\,$ Se forelæsning på video: Skema A video eller Skema B video
  • $\,$ 9.00 – 11.00: $\,$Gruppeøvelser i klasselokalet (bygn 358 / rum 042)
  • 11.00 – 12.00: $\,$Ugens Test $\,$

Opgaver til gruppeøvelserne

  1. Modellering med lineær algebra
  2. Transponeret ligningssystem
  3. Ligningssystemer versus matrixligninger
  4. Regulær matrix, invers matrix
  5. Løsningsmængders struktur Tip: Hvis du ønsker en printbar version af opgaverne uden vink og facit, går du direkte til din browsers print-funktion når du er inde på opgaverne.

Om Ugens Test i dag
Vi understreger følgende om ugens test:

  • Det er en stedprøve, det vil sige at den skal løses i klasselokalet.
  • Prøven skal regnes uden elektroniske hjælpemidler, men tastes ind i quiz-programmet Möbius.
  • Du skal gå i full screen mode, så prøven fylder hele din skærm
  • Din hjælpelærer giver dig en kode der skal indtastes for at starte testen
  • Brug Firefox eller Chrome, og slå adblocker fra (hvis du har det).
  • Man må gerne snakke sammen om opgaverne i sin arbejdsgruppe, men bemærk: Du har din egen version af opgaven som du selv skal løse og taste ind.
  • Inden for den sidste time på Lille Dag, har du kun ét forsøg. Fredag 18:00 til onsdag 18:00 genåbnes prøven for gentagne forsøg (ugeversionen).

Du finder linket til Ugens Test i din skemagruppes topbjælke i Learn