\\\\(
\nonumber
\newcommand{\bevisslut}{$\blacksquare$}
\newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}}
\newcommand{\transp}{\hspace{-.6mm}^{\top}}
\newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace}
\newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}}
\newcommand{\eqnl}{}
\newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}}
\newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}}
\newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}}
\newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}}
\newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}}
\newcommand{\am}{\mathrm{am}}
\newcommand{\gm}{\mathrm{gm}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\mU}{\mathbf{U}}
\newcommand{\mA}{\mathbf{A}}
\newcommand{\mB}{\mathbf{B}}
\newcommand{\mC}{\mathbf{C}}
\newcommand{\mD}{\mathbf{D}}
\newcommand{\mE}{\mathbf{E}}
\newcommand{\mF}{\mathbf{F}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mN}{\mathbf{N}}
\newcommand{\mQ}{\mathbf{Q}}
\newcommand{\mT}{\mathbf{T}}
\newcommand{\mV}{\mathbf{V}}
\newcommand{\mW}{\mathbf{W}}
\newcommand{\mX}{\mathbf{X}}
\newcommand{\ma}{\mathbf{a}}
\newcommand{\mb}{\mathbf{b}}
\newcommand{\mc}{\mathbf{c}}
\newcommand{\md}{\mathbf{d}}
\newcommand{\me}{\mathbf{e}}
\newcommand{\mn}{\mathbf{n}}
\newcommand{\mr}{\mathbf{r}}
\newcommand{\mv}{\mathbf{v}}
\newcommand{\mw}{\mathbf{w}}
\newcommand{\mx}{\mathbf{x}}
\newcommand{\mxb}{\mathbf{x_{bet}}}
\newcommand{\my}{\mathbf{y}}
\newcommand{\mz}{\mathbf{z}}
\newcommand{\reel}{\mathbb{R}}
\newcommand{\mL}{\bm{\Lambda}}
\newcommand{\mnul}{\mathbf{0}}
\newcommand{\trap}[1]{\mathrm{trap}(#1)}
\newcommand{\Det}{\operatorname{Det}}
\newcommand{\adj}{\operatorname{adj}}
\newcommand{\Ar}{\operatorname{Areal}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\Rum}{\operatorname{Rum}}
\newcommand{\diag}{\operatorname{\bf{diag}}}
\newcommand{\bidiag}{\operatorname{\bf{bidiag}}}
\newcommand{\spanVec}[1]{\mathrm{span}{#1}}
\newcommand{\Div}{\operatorname{Div}}
\newcommand{\Rot}{\operatorname{\mathbf{Rot}}}
\newcommand{\Jac}{\operatorname{Jacobi}}
\newcommand{\Tan}{\operatorname{Tan}}
\newcommand{\Ort}{\operatorname{Ort}}
\newcommand{\Flux}{\operatorname{Flux}}
\newcommand{\Cmass}{\operatorname{Cm}}
\newcommand{\Imom}{\operatorname{Im}}
\newcommand{\Pmom}{\operatorname{Pm}}
\newcommand{\IS}{\operatorname{I}}
\newcommand{\IIS}{\operatorname{II}}
\newcommand{\IIIS}{\operatorname{III}}
\newcommand{\Le}{\operatorname{L}}
\newcommand{\app}{\operatorname{app}}
\newcommand{\M}{\operatorname{M}}
\newcommand{\re}{\mathrm{Re}}
\newcommand{\im}{\mathrm{Im}}
\newcommand{\compl}{\mathbb{C}}
\newcommand{\e}{\mathrm{e}}
\\\\)
Uge 3, Store Dag: Polynomier
Polynomier ligger i de komplekse tals hjerte, det er derfra det hele startede. Hvorfor er der polynomier som ikke har rødder, og hvilke regler gælder der for hvor mange rødder forskellige polynomier har? Det var den slags spørgsmål som optog de matematikere der udviklede de komplekse tal. De fandt ud af at hvis blot man indfører et nyt tal $i\,$ som opfylder $\,i^2=-1\,,$ så har ethvert polynomium mindst én rod. Og endnu flottere: Hvis man regner rødder med multiplicitet så har ethvert $n$‘te gradspolynomium præcist $n$ rødder. I dagens program studerer vi polynomiernes struktur og deres rødder, herunder strategier for at finde rødderne. Vi får også anledning til at se på komplekse funktioner hvis realdel og imaginærdel er reelle polynomier. Kan man differentiere dem?
Dagens nøglebegreber
Polynomier versus algebraiske ligninger. Rødder for førstegradspolynomier. Løsningsmetoder for binome og generelle andengradsligninger med henholdsvis reelle og komplekse koefficienter. Rødder i polynomier. Nedstigning. Faktorisering af polynomier (nulreglen er afgørende!). Algebraisk multiplicitet. Differentiation af polynomier.
Forberedelse og pensum
Til i dag hører hele eNoten Polynomier. Men vi arbejder fortsat med emner fra Komplekse Tal hvor vi bla. kaster et første blik på differentiation af komplekse funktioner, se afsnit 1.10.
Aktivitetsprogrammet
- 10.00 – 12.00: $\,$ Se forelæsningen på video: Skema A, del 1 og del 2, eller Skema B, del 1 og 2.
- 12.30 – 17.00: $\,$ Gruppeøvelser i klasselokalet (bygn. 358/ rum 042)
- 13.00 – 16.00: $\,$ Din klasselærer er til stede i klasselokalet
Opgaver til gruppeøvelserne
- Dagens wetware-opgave
- Førstegradpolynomier
- Binome 2.gradsligninger med reel højreside
- At kunne faktorisere for at kunne forkorte
- Nedstigningssætningen
- Få styr på begreberne
- Differentiationer
- Polynomium med komplekse koefficienter
- En andengradslignings geometri. Enjoy!
Opgaverne i pdf uden vink og facit.