\\\\(
\nonumber
\newcommand{\bevisslut}{$\blacksquare$}
\newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}}
\newcommand{\transp}{\hspace{-.6mm}^{\top}}
\newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace}
\newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}}
\newcommand{\eqnl}{}
\newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}}
\newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}}
\newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}}
\newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}}
\newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}}
\newcommand{\am}{\mathrm{am}}
\newcommand{\gm}{\mathrm{gm}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\mU}{\mathbf{U}}
\newcommand{\mA}{\mathbf{A}}
\newcommand{\mB}{\mathbf{B}}
\newcommand{\mC}{\mathbf{C}}
\newcommand{\mD}{\mathbf{D}}
\newcommand{\mE}{\mathbf{E}}
\newcommand{\mF}{\mathbf{F}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mN}{\mathbf{N}}
\newcommand{\mQ}{\mathbf{Q}}
\newcommand{\mT}{\mathbf{T}}
\newcommand{\mV}{\mathbf{V}}
\newcommand{\mW}{\mathbf{W}}
\newcommand{\mX}{\mathbf{X}}
\newcommand{\ma}{\mathbf{a}}
\newcommand{\mb}{\mathbf{b}}
\newcommand{\mc}{\mathbf{c}}
\newcommand{\md}{\mathbf{d}}
\newcommand{\me}{\mathbf{e}}
\newcommand{\mn}{\mathbf{n}}
\newcommand{\mr}{\mathbf{r}}
\newcommand{\mv}{\mathbf{v}}
\newcommand{\mw}{\mathbf{w}}
\newcommand{\mx}{\mathbf{x}}
\newcommand{\mxb}{\mathbf{x_{bet}}}
\newcommand{\my}{\mathbf{y}}
\newcommand{\mz}{\mathbf{z}}
\newcommand{\reel}{\mathbb{R}}
\newcommand{\mL}{\bm{\Lambda}}
\newcommand{\mnul}{\mathbf{0}}
\newcommand{\trap}[1]{\mathrm{trap}(#1)}
\newcommand{\Det}{\operatorname{Det}}
\newcommand{\adj}{\operatorname{adj}}
\newcommand{\Ar}{\operatorname{Areal}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\Rum}{\operatorname{Rum}}
\newcommand{\diag}{\operatorname{\bf{diag}}}
\newcommand{\bidiag}{\operatorname{\bf{bidiag}}}
\newcommand{\spanVec}[1]{\mathrm{span}{#1}}
\newcommand{\Div}{\operatorname{Div}}
\newcommand{\Rot}{\operatorname{\mathbf{Rot}}}
\newcommand{\Jac}{\operatorname{Jacobi}}
\newcommand{\Tan}{\operatorname{Tan}}
\newcommand{\Ort}{\operatorname{Ort}}
\newcommand{\Flux}{\operatorname{Flux}}
\newcommand{\Cmass}{\operatorname{Cm}}
\newcommand{\Imom}{\operatorname{Im}}
\newcommand{\Pmom}{\operatorname{Pm}}
\newcommand{\IS}{\operatorname{I}}
\newcommand{\IIS}{\operatorname{II}}
\newcommand{\IIIS}{\operatorname{III}}
\newcommand{\Le}{\operatorname{L}}
\newcommand{\app}{\operatorname{app}}
\newcommand{\M}{\operatorname{M}}
\newcommand{\re}{\mathrm{Re}}
\newcommand{\im}{\mathrm{Im}}
\newcommand{\compl}{\mathbb{C}}
\newcommand{\e}{\mathrm{e}}
\\\\)
Uge 2, Lille Dag: Polære koordinater og eksponentialfunktionen
Fra gymnasiet ved du at den naturlige eksponentialfunktion og den naturlige logaritmefunktion er hinandens omvendte funktioner. Men hvad hedder de omvendte funktioner til cosinus og sinus, og er du klar over at du har brugt dem mange gange? Her starter vi ud i dag. Vi arbejder også videre med den komplekse eksponentialfunktion og de komplekse tals eksponentielle form. Når vi løser binome ligninger eller andre komplekse ligninger, veksler vi hele tiden mellem rektangulær form, polære koordinater og eksponentiel form. Behersk de komplekse tals forskelle former, så kan du knække ligningerne!
Dagens nøglebegreber
Omvendte funktioner. Arccos og Arcsin. Trigonometriske ligninger. Binome ligninger. Komplekse potenser. Eksponentiel vækst.
Forberedelse og pensum
Til i dag hører igen eNoten Komplekse Tal, afsnit 1.5 til 1.8 Læs også om omvendte funktioner og arcusfunktionerne i eNote 3 om Elementære funktioner, afsnit 3.5 og 3.8.
Aktivitetsprogrammet
- $\,$ 8.00 – $\,$ 9.00: $\,$ Se forelæsning på video: Skema A video eller Skema B video
- $\,$ 9.00 – 11.00: $\,$Gruppeøvelser i klasselokalet (bygn 358 / rum 042)
- 11.00 – 12.00: $\,$Ugens Test $\,$
Opgaver til gruppeøvelserne
- Dagens wetware-opgave
- Retvinklede trekanter
- Arccos, Arsin og trigonometriske ligninger
- Potenser af reelle tal
- Udregning af komplekse potenser
- Binome ligninger
- Eksponentiel vækst (repetition af viden fra gymnasiet)
Tip: Hvis du ønsker en printbar version af opgaverne uden vink og facit, går du direkte til din browsers print-funktion når du er inde på opgaverne.
Om Ugens Test i dag
Vi understreger følgende om ugens test:
- Det er en stedprøve, det vil sige at den skal løses i klasselokalet.
- Prøven skal regnes uden elektroniske hjælpemidler, men tastes ind i quiz-programmet Möbius.
- Du skal gå i full screen måde, så prøven fylder hele din skærm.
- Din hjælpelærer giver dig en kode der skal indtastes for at få adgang til quizen.
- Brug Firefox eller Chrome, og slå adblocker fra (hvis du har det).
- Man må gerne snakke sammen om opgaverne i sin arbejdsgruppe, men bemærk: Du har din egen version af opgaven som du selv skal løse og taste ind.
- Inden for den sidste time på Lille Dag, har du kun ét forsøg. Fredag 18:00 til onsdag 18:00 genåbnes prøven for gentagne forsøg (ugeversionen).
Du finder linket til Ugens Test på din Mat1-skemagruppe i Learn, linket findes i topbjælken.