\\\\(
\nonumber
\newcommand{\bevisslut}{$\blacksquare$}
\newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}}
\newcommand{\transp}{\hspace{-.6mm}^{\top}}
\newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace}
\newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}}
\newcommand{\eqnl}{}
\newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}}
\newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}}
\newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}}
\newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}}
\newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}}
\newcommand{\am}{\mathrm{am}}
\newcommand{\gm}{\mathrm{gm}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\mU}{\mathbf{U}}
\newcommand{\mA}{\mathbf{A}}
\newcommand{\mB}{\mathbf{B}}
\newcommand{\mC}{\mathbf{C}}
\newcommand{\mD}{\mathbf{D}}
\newcommand{\mE}{\mathbf{E}}
\newcommand{\mF}{\mathbf{F}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mN}{\mathbf{N}}
\newcommand{\mQ}{\mathbf{Q}}
\newcommand{\mT}{\mathbf{T}}
\newcommand{\mV}{\mathbf{V}}
\newcommand{\mW}{\mathbf{W}}
\newcommand{\mX}{\mathbf{X}}
\newcommand{\ma}{\mathbf{a}}
\newcommand{\mb}{\mathbf{b}}
\newcommand{\mc}{\mathbf{c}}
\newcommand{\md}{\mathbf{d}}
\newcommand{\me}{\mathbf{e}}
\newcommand{\mn}{\mathbf{n}}
\newcommand{\mr}{\mathbf{r}}
\newcommand{\mv}{\mathbf{v}}
\newcommand{\mw}{\mathbf{w}}
\newcommand{\mx}{\mathbf{x}}
\newcommand{\mxb}{\mathbf{x_{bet}}}
\newcommand{\my}{\mathbf{y}}
\newcommand{\mz}{\mathbf{z}}
\newcommand{\reel}{\mathbb{R}}
\newcommand{\mL}{\bm{\Lambda}}
\newcommand{\mnul}{\mathbf{0}}
\newcommand{\trap}[1]{\mathrm{trap}(#1)}
\newcommand{\Det}{\operatorname{Det}}
\newcommand{\adj}{\operatorname{adj}}
\newcommand{\Ar}{\operatorname{Areal}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\Rum}{\operatorname{Rum}}
\newcommand{\diag}{\operatorname{\bf{diag}}}
\newcommand{\bidiag}{\operatorname{\bf{bidiag}}}
\newcommand{\spanVec}[1]{\mathrm{span}{#1}}
\newcommand{\Div}{\operatorname{Div}}
\newcommand{\Rot}{\operatorname{\mathbf{Rot}}}
\newcommand{\Jac}{\operatorname{Jacobi}}
\newcommand{\Tan}{\operatorname{Tan}}
\newcommand{\Ort}{\operatorname{Ort}}
\newcommand{\Flux}{\operatorname{Flux}}
\newcommand{\Cmass}{\operatorname{Cm}}
\newcommand{\Imom}{\operatorname{Im}}
\newcommand{\Pmom}{\operatorname{Pm}}
\newcommand{\IS}{\operatorname{I}}
\newcommand{\IIS}{\operatorname{II}}
\newcommand{\IIIS}{\operatorname{III}}
\newcommand{\Le}{\operatorname{L}}
\newcommand{\app}{\operatorname{app}}
\newcommand{\M}{\operatorname{M}}
\newcommand{\re}{\mathrm{Re}}
\newcommand{\im}{\mathrm{Im}}
\newcommand{\compl}{\mathbb{C}}
\newcommand{\e}{\mathrm{e}}
\\\\)
Uge 7, Lille Dag: Mere om gradientvektorfelter
I dag forfiner vi undersøgelsen af vektorfelter, især gradientvektorfelter: Vi skal nyde nogle smukke sætninger om tangentielle kurveintegraler i gradientvektorfelter. Hvad siger du for eksempel til: I et gradientvektorfelt er det tangentielle kurveintegral uafhængigt af vejen! Eller: Hvis du har en stamfunktion, kan du finde det tangentielle kurveintegral ved stamfunktionens værdi i endepunkterne. Eller: I et gradientfelt er alle cirkulationer lig med 0! Eller: Et gradient er rotationsfrit!
Dagens nøglebegreber
Vektorfelt. Gradientvektorfelter. Stamfunktion. Divergens. Rotation. Cirkulationer.
Forberedelse og pensum
Vi fortsætter i dag med emner fra eNote 26 om vektorfelter og eNote 27 om tangentielt kurveintgral.
MapleDemo
Til dagens emne hører der MapleDemoen Divergens og Rotation basic om divergens og rotation.
SymPyDemo
Til dagens emne hører der SymPyDemoen Divergens og Rotation basic om divergens og rotation.
Aktivitetsprogrammet
- $\,$ 8.00 – $\,$ 9.00: $\,$ Se forelæsning på video: Skema A video eller Skema B video
- $\,$ 9.00 – 11.00: $\,$Gruppeøvelser i klasselokalet
- 11.00 – 12.00: $\,$Ugens Test $\,$
Opgaver til gruppeøvelserne:
- Bestemmelse af stamfunktion. Håndregning
- Divergens og rotation. Håndregning
- Eksplosion-, rotation- og implosionsvektorfelt
- Tangentielle kurveintegraler i gradientvektorfelter
- Cirkulationer i planen
- Studium af divergens (advanced)
$ $
Om Ugens Test i dag
Vi understreger følgende om ugens test:
- Det er en stedprøve, det vil sige at den skal løses i klasselokalet.
- Prøven skal regnes uden elektroniske hjælpemidler, men tastes ind i quiz-programmet Möbius.
- Du skal gå i full screen måde, så prøven fylder hele din skærm
- Din hjælpelærer giver dig en kode der skal indtastes for at aktivere testen
- Brug Firefox eller Chrome, og slå adblocker fra (hvis du har det).
- Man må gerne snakke sammen om opgaverne i sin arbejdsgruppe, men bemærk: Du har din egen version af opgaven som du selv skal løse og taste ind.
- Inden for den sidste time på Lille Dag, har du kun ét forsøg. Fredag 18:00 til onsdag 18:00 genåbnes prøven for gentagne forsøg (ugeversionen).
Du finder linket til Ugens Test på din Mat1-skemagruppes Learn-konto.
$ $
$ $