\\\\(
\nonumber
\newcommand{\bevisslut}{$\blacksquare$}
\newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}}
\newcommand{\transp}{\hspace{-.6mm}^{\top}}
\newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace}
\newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}}
\newcommand{\eqnl}{}
\newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}}
\newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}}
\newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}}
\newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}}
\newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}}
\newcommand{\am}{\mathrm{am}}
\newcommand{\gm}{\mathrm{gm}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\mU}{\mathbf{U}}
\newcommand{\mA}{\mathbf{A}}
\newcommand{\mB}{\mathbf{B}}
\newcommand{\mC}{\mathbf{C}}
\newcommand{\mD}{\mathbf{D}}
\newcommand{\mE}{\mathbf{E}}
\newcommand{\mF}{\mathbf{F}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mN}{\mathbf{N}}
\newcommand{\mQ}{\mathbf{Q}}
\newcommand{\mT}{\mathbf{T}}
\newcommand{\mV}{\mathbf{V}}
\newcommand{\mW}{\mathbf{W}}
\newcommand{\mX}{\mathbf{X}}
\newcommand{\ma}{\mathbf{a}}
\newcommand{\mb}{\mathbf{b}}
\newcommand{\mc}{\mathbf{c}}
\newcommand{\md}{\mathbf{d}}
\newcommand{\me}{\mathbf{e}}
\newcommand{\mn}{\mathbf{n}}
\newcommand{\mr}{\mathbf{r}}
\newcommand{\mv}{\mathbf{v}}
\newcommand{\mw}{\mathbf{w}}
\newcommand{\mx}{\mathbf{x}}
\newcommand{\mxb}{\mathbf{x_{bet}}}
\newcommand{\my}{\mathbf{y}}
\newcommand{\mz}{\mathbf{z}}
\newcommand{\reel}{\mathbb{R}}
\newcommand{\mL}{\bm{\Lambda}}
\newcommand{\mnul}{\mathbf{0}}
\newcommand{\trap}[1]{\mathrm{trap}(#1)}
\newcommand{\Det}{\operatorname{Det}}
\newcommand{\adj}{\operatorname{adj}}
\newcommand{\Ar}{\operatorname{Areal}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\Rum}{\operatorname{Rum}}
\newcommand{\diag}{\operatorname{\bf{diag}}}
\newcommand{\bidiag}{\operatorname{\bf{bidiag}}}
\newcommand{\spanVec}[1]{\mathrm{span}{#1}}
\newcommand{\Div}{\operatorname{Div}}
\newcommand{\Rot}{\operatorname{\mathbf{Rot}}}
\newcommand{\Jac}{\operatorname{Jacobi}}
\newcommand{\Tan}{\operatorname{Tan}}
\newcommand{\Ort}{\operatorname{Ort}}
\newcommand{\Flux}{\operatorname{Flux}}
\newcommand{\Cmass}{\operatorname{Cm}}
\newcommand{\Imom}{\operatorname{Im}}
\newcommand{\Pmom}{\operatorname{Pm}}
\newcommand{\IS}{\operatorname{I}}
\newcommand{\IIS}{\operatorname{II}}
\newcommand{\IIIS}{\operatorname{III}}
\newcommand{\Le}{\operatorname{L}}
\newcommand{\app}{\operatorname{app}}
\newcommand{\M}{\operatorname{M}}
\newcommand{\re}{\mathrm{Re}}
\newcommand{\im}{\mathrm{Im}}
\newcommand{\compl}{\mathbb{C}}
\newcommand{\e}{\mathrm{e}}
\\\\)
Uge 5, Lille Dag: Særlige flader i rummet
Vi arbejder videre med planintegraler og fladeintegraler. I fokus er to vigtige typer af flader: Grafer for funktioner af to variable og omdrejningsflader. Du lærer særlige metoder til at parametrisere dem, og derefter skal du træne videre med bestemmelse af de tilhørende Jacobi-funktioner og uderegning af integraler.
Dagens nøglebegreber
Flader som er graf for en funktion af to variable. Omdrejningsflader.
Forberedelse og pensum
Til i dag hører emner fra eNote 24 afsnit 24.2, og emner fra eNote 25 afsnit 25.1
Maple-guf
Til dagens emne hører der MapleDemoen Specielle flader.
Aktivitetsprogrammet for Skema A og B:
$\,$ 8.00 – $\,$ 9.00: $\,$ Forelæsning (live stream)
$\,$ 9.00 – 11.00: $\,$Gruppeøvelser i klasselokalerne
11.00 – 12.00: $\,$ Ugens Test
Aktivitetsprogrammet for Skema C:
13.00 – 14.00: $\,$Forelæsning på engelsk live, eller video fra Skema A
eller Skema B
14.00 – 16.00: $\,$Gruppeøvelser i klasselokalerne
16.00 – 17.00: $\,$ Ugens Test
Opgaver til gruppeøvelserne:
- Partiel integration og substitution i to variable
- Planintegral med parametrisering
- Grafflade, parametrisering og integration
- Omdrejningsflade, parametrisering og intergral
- Grafflade, parametrisering og integration
Tip: Hvis du ønsker en printbar version af opgaverne uden vink og facit, går du direkte til din browsers print-funktion når du er inde på opgaverne.
$ $
Om Ugens Test i dag
Vi understreger følgende om ugens test:
- Det er en stedprøve, det vil sige at den skal løses i klasselokalet.
- Prøven skal regnes uden elektroniske hjælpemidler, men tastes ind i quiz-programmet MapleTA.
- Du skal gå i full screen måde, så prøven fylder hele din skærm
- Din hjælpelærer giver dig en kode der skal indtastes i spørgsmål 1
- Brug Firefox eller Chrome, og slå adblocker fra (hvis du har det).
- Man må gerne snakke sammen om opgaverne i sin arbejdsgruppe, men bemærk: Du har din egen version af opgaven som du selv skal løse og taste ind.
- Inden for den sidste time på Lille Dag, har du kun ét forsøg. Fredag 18:00 til onsdag 18:00 genåbnes prøven for gentagne forsøg (ugeversionen).
Du finder linket til Ugens Test på din Mat1-klasses Learn-konto.
$ $
$ $